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The vorticity distribution in a Rossby-wave nonlinear critical layer, given by the 
Stewartson-Warn-Warn solution, may be strongly modified by the action of shear 
instability. In a companion paper (Killworth & McIntyre 1985) it  was shown, using 
linear theory, that unstable modes indeed existed. Here, using numerical methods, 
the nonlinear evolution of unstable disturbances is followed up to the time at which 
their growth ceases. By such a time there has been considerable redistribution of 
vorticity in the critical layer. 

1. Introduction 
The idea of a critical line is well established in hydrodynamics and frequently arises 

in problems involving monochromatic wave disturbances to a shear flow. In  the 
neighbourhood of the critical line, where the phase speed of the wave is equal to the 
basic-flow speed, steady linear theory is inadequate to describe the dynamical balance 
governing the waves. In  this paper we shall be concerned with the Rossby-wave case 
(where this term is used not just in the geophysical context, but includes any wave 
which owes its existence to a basic-state vorticity gradient) reviewed by Stewartson 
(1981). Our understanding of the nonlinear and time-dependent processes that may 
take place near a Rossby-wave critical line, if the viscosity is small enough, has been 
considerably enhanced by the numerical work of BBland (1976, 1978) and the 
analytical theory presented by Stewartson (1978) and Warn & Warn (1978) (hereinafter 
referred to as SWW). 

The problem that SWW considered was one in which small-amplitude mono- 
chromatic waves are forced on a zonal shear flow by corrugations in a rigid wall. The 
corrugations are switched on at some instant and in the subsequent evolution 
transient effects become confined to a region centred on the critical line and 
decreasing in thickness with time (Dickinson 1970), while elsewhere the wave pattern 
settles down to a steady state. However small the wave amplitude, nonlinear effects 
must eventually become important in the thin region of transient motion surrounding 
the critical line (Warn & Warn 1976). This region is customarily referred to as the 
critical layer. 

The problem therefore exhibits a two-scale structure; a thin critical layer where 
the motion is nonlinear and transient and a much broader region where, to a first 
approximation, the motion consists of quasi-steady waves. This structure was 
exploited mathematically by SWW, using the method of matched asymptotic 
expansions. In such a formulation, interaction between the motion in the two regions 

7 Also J.I.S.A.O. Contribution no. 17, University of Washington, Seattle, Washington 98195. 
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occurs through the matching conditions, which require that the solution valid in one 
region smoothly blends into that valid in the other. 

The details of the SWW analysis are reviewed in the companion paper to this, 
Killworth & McIntyre (1985), hereinafter referred to as KM. One particularly 
interesting result emerges when the forced waves are assumed to have long zonal 
wavelength. Then, as noted by Warn & Warn (1978), in certain special cases of the 
distance between the rigid wall and the critical line, the equation for the absolute 
vorticity in the critical layer has a closed-form analytic solution found by Stewartson 
(1978). The absolute vorticity 8 may therefore be written explicitly as a known 
function of the suitably scaled and non-dimensional variables 9, Y and 9, respectively 
representing distance along and across the critical layer, and time. The distribution 
of & a t  various times 9 during the evolution of the nonlinear critical layer is shown 
in figure 2 in KM and in figures 5-7 appearing later in this paper. As these figures 
make apparent, contours of &, which coincide with material contours, are simply 
deformed by flow in the critical layer. The streamlines of the flow take the form of 
Kelvin cat's eyes of constant size and shape in this special case. 

The SWW solution serves as a valuable benchmark that reveals many aspects of 
nonlinear critical-layer behaviour. Of particular interest is the matching condition 
across the layer, which controls whether it acts as a wave absorber, reflector, or 
over-reflector. According to the SWW solution, the critical layer evolves from an 
initial absorbing state, through reflection, to an over-reflecting state. This progression 
is then reversed, and subsequently the critical layer continually changes from 
over-reflection to absorption and back again. The oscillations are of decreasing 
amplitude so that ultimately the critical layer tends toward a perfectly reflecting 
state. 

However, it seems that the SWW solution does not tell the whole story in that 
the flow it predicts is unstable. In fact there is a hint of the unstable behaviour in 
BQland's (1976) numerical simulation (see especially his figure 5 ) .  The instability is 
possible because of the reversal of the meridional vorticity gradient a t  certain 
locations in the critical layer as may be seen in figure 2 of KM. In a parallel flow this 
would be a necessary condition for instability: it  turns out that here, because of the 
assumption made by SWW that the forced waves have long zonal wavelength, which 
is essential for the analytic solution to be valid, the flow may be regarded as locally 
parallel. It is useful to express the long-wavelength condition quantitatively by 
defining a small parameter ,u equal to the cross-stream lengthscale of the waves in 
the outer flow divided by the wavelength. 

KM show that the scale of the disturbances to which the flow is unstable is much 
smaller than the wavelength of the forced waves, and the timescale on which they 
develop is much shorter than the evolution time for the critical layer as a whole. Thus, 
even though the vorticity distribution in the critical layer varies in the zonal 
direction, and changes with time, the stability problem may be tackled by considering 
the evolution of disturbances to a zonally uniform and time-independent basic state, 
which corresponds to the cross-stream vorticity distribution at a particular zonal 
location 9 and at  a particular time 9. To describe the zonal structure and the variation 
with time of the disturbance it is necessary to define the new variables x = p-% and 
T = The smallness of the parameter ,u allows 9 and !f' to be held constant as 
x and T vary. 

The starting point for the work presented in this paper is taken to be the equations 
which describe the evolution of a disturbance to the flow represented by the SWW 
solution. The derivation of these equations is set out in KM; however it is useful to 
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recall that they are obtained at  leading order in a perturbation analysis based on the 
small parameter E ,  which is a measure of the wave amplitude. 

The equation for the leading-order disturbance vorticity &(x, Y, T) in the critical 
layer at particular values of P and p is given by 

ac a0 -+ Y-+-- &(x, Y , T ) + - - ( Z ,  Y , P )  = 0. 
{a?T ax a a c a l  ax ay ax ay 

This simply describes the advection of absolute vorticity &(z, Y, T) + o ( P ,  Y, p),  
being the disturbance vorticity plus the absolute vorticity given by the SWW 
solution, around streamlines described by the curves f Ya-C(x, T) = constant. These 
streamlines take the form of secondary cat's eyes, of the same width as the primary, 
forced cat's eye, but with much shorter length. The function C(z, T) is related to the 
vorticity Q through the relation 

x &(k, Y, T) d Y  = -x  cot-C(k, T), 
21kl 

where the notation (") represents the Fourier transform with respect to x, so that 

00 

c ( k ,  T) = 5 e-ikzC(x, T) dx, 
--m 

00 

Q(k, Y, T) = e-ikz&(x, Y, T) dx. 
-m 

( 1 . 3 ~ )  

(1.3b) 

The equation ( 2) is an expression of the matching condition .,.&ween the disturbance 
in the critical layer and that in the outer flow. Together with (1.1) it provides a closed 
mathematical system, which may be solved given an initial distribution of vorticity 
in the critical layer. 

A linearized version of (l.l),  which is valid when the disturbance is small so that 
the term (aC/az)(a&/aY) may be ignored, is solved in KM. They calculated the 
growth rates and spatial structures of the unstable modes and by finding fastest- 
growing modes confirmed that the assumptions made concerning the scale of the 
disturbances were correct. A short account of the linear stability characteristics, 
including some results not presented by KM, is given in $2. 

The investigation described here has a well-defined goal: to demonstrate con- 
vincingly that the unstable disturbances grow to sufficient amplitude to disrupt com- 
pletely the vorticity distribution predicted by SWW. This is accomplished by 
examining the behaviour of disturbances on zonally uniform basic states corre- 
sponding to those given by the SWW solution at particular times, and locations along 
the critical layer. Rather than solving the linear problem, the relevant nonlinear 
equations are integrated numerically and the disturbance is allowed to modify the 
vorticity distribution on which it grows. This task is made feasible by the fact that 
numerical calculation is necessary only in the critical layer, the whole effect of the 
outer flow being dealt with through the condition (1.2). Since any conclusions made 
in this paper are based on numerical results it is important to establish the reliability 
of the numerical methods used. These are described in $3,  in some detail where the 
method is non-standard. The results themselves are then presented in $4. They 
demonstrate conclusively that the instability is strong enough to lead to a drastic 
rearrangement of the vorticity in the critical layer. 
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2. The linear instability problem 
As reported in KM, some analytical progress may be made with the instability 

problem if it is assumed that the disturbance is weak, so that it does not modify the 
absolute vorticity gradient. In such a case the linearized version of ( 1 . 1 )  given by 

{&+ Y&}Q(x, Y , T ) + - - ( &  ac aQ Y,rfi) = o  ax ay  

is appropriate. 
Attention is confined to normal-mode solutions of the form 

&(x, Y ,  T) = Re{&,( Y )  eik(z-ct) 1. (2.2) 

Substituting this into (2.1) and the matching condition (1.2) leads to the eigenvalue 
condition Y,T)- - dY = x cot-, R 

Y - c  2lkl (2.3) 

as obtained by KM. The integral is evaluated along a contour passing below Y = c 
in the complex- Y plane. 

KM demonstate by example that, for values o f f  and rfi such that the absolute 
vorticity gradient a&/a Y changes sign, unstable modes exist with growth rates that 
are quite sizeable. These results are presented in their table 1. Note that the results 
indicate that the stability characteristics of the vorticity pattern are asymmetric 
about the centre of the cat’s eye. This is to be expected since (2.1) is not invariant 
under the transformation f +  -9, Y +  - Y .  Here we note the further result, not 
shown in KM, that the condition that a$/aY is zero for some Y is both necessary 
and sufficient for the existence of unstable modes. An analogue of Rayleigh’s theorem 
may be proved by considering the imaginary parts of each side of (2.3), giving the 
condition 

Modes with Im ( c )  > 0 exist only if aQ/aY changes sign for some Y .  
In order to prove the sufficiency of this condition we may appeal to a version of 

the Tollmien-Lin perturbation analysis (e.g. Drazin & Reid 1981, pp. 134-136), which 
predicts that every neutral mode has a neighbouring unstable mode. All that needs 
to be shown is that if aQ/aY = 0 for some Y then a t  least one neutral mode exists. 
Consider the left-hand side of (2.3) as a function of the complex variable c .  If we allow 
Im ( c )  +O+ we obtain the result 

R 
= ncot- 

2lkl ’  
(2.5) 

The imaginary part of this equation may be satisfied by taking Re (c) equal to that 
value of Y for which aQ/aY is zero - this then fixes the value of the real part of the 
left-hand side. However the function of k on the right-hand side takes all possible 
real values as k increases from zero to infinity. Thus a value of k certainly exists for 
which the real part of (2.5) is satisfied and so a neutral mode, and therefore a growing 
mode, exists. 
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3. Numerical methods 
In order to integrate the nonlinear equations efficiently and accurately it was 

necessary to use a variety of numerical techniques, some standard and some 
non-standard. To support the claim that the numerical results presented in the next 
section are reliable, these techniques will be briefly described here. 

It seemed natural to use a spectral representation of the variables Q and C in the 
x-direction, writing them as truncated Fourier series thus : 

N 

N 

n-1 
C = Z {C,(T) cosnkx+C,+,(T) sinnks}. 

Substitution of these expressions into ( I .  1)  gives a set of coupled partial differential 
equations in Y and T for the Fourier coefficients Q,. Similarly, each quantity C ,  is 
related to the Y-integral of Q, through (1.2), indeed the spectral representation seems 
a natural way to deal with this equation. In  general there are a number of advantages 
to using a spectral method, the main one being the high spatial accuracy possible 
with a limited number of spectral components (see Gottlieb & Orszag 1977, and 
references). The possibility of using a spectral representation in the Y-direction was 
also considered, but no natural set of functions on which to base such a representation 
could be found. 

The main disadvantage of using spectral methods is that multiplication is a 
‘non-local ’ operation in wavenumber space, in the sense that a convolution series over 
all harmonics must be evaluated. However, as proposed by Orszag (1909), a more 
economical method of evaluating products is to apply a Fourier transform to the 
spectral coefficients, perform the multiplication at  a set of points in physical space, 
and then transform back. If fast transform algorithms are used this is more 
economical than direct convolution, and so this method was used here. ‘Aliased’ 
products were used throughout and no problems with this were encountered. (For 
a full discussion of aliasing see Orszag 1971.) 

Explicit time integration of the partial differential equations for the Fourier 
coefficients was confined to a number of grid points at equally spaced values of Y 
between +a and -a. However it was necessary to estimate the vorticity Q outside 
the domain ( -a, a) for two reasons: (i) to take account of the contribution to the 
integral expressions (1.2) for the C,, which had to be evaluated at each step in the 
time integration; and (ii) to evaluate finite-difference expressions at  the edges of the 
computational domain. 

The required estimate was obtained by an approximate analysis of ( l . l ) ,  on the 
basis that the dominant balance at large values of Y was between zonal advection of 
disturbance vorticity by the basic-state shear Y(aq/ax) and cross-stream advection of 
the basic-state vorticity by the disturbance (aC/ax) @&/a Y). This is consistent with 
the proposed outer behaviour - both depend on the assumption that the disturbance 
vorticity in the outer region varies only on the inner timescale. It is therefore expected 
that this approximation scheme will be able to deal with the motion arising from any 
vorticity perturbation initially confined to the critical layer. 

Assuming this dominant balance, i t  is straightforward to obtain an expression for 
Q as I Y I + 00 by substitution of successively higher approximations into the other 
terms in (1.1).  The only further calculation needed is to determine the x-independent 
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part of Q, by considering the x-average of ( l . l ) ,  and integrating with respect to  
time. It is found that Q takes the form 

a2c a& 
J x  dx‘ Jx‘ dx” 

- (x”, T) - 
Y3 aT2 aY 

a8 
ay 

(x’, T) -- 
dx’ aC 

(i3) (3.3) 
1 c2 a& 1 c2 a2& 1 C2 a& 
2 y 3 a y  2 2 ~ 3 a ~ + ”  - 

- - - - - - - - - - - - 

for large I Y I, where (-) denotes the mean over x. 
The integral of Q over Y that appears in the expression for C may be split into two 

parts, being the contributions from ( - a ,  a )  and from outside this interval. Since Q 
is known at each gridpoint the first contribution may be calculated directly using 
Simpson’s rule. The second contribution may be evaluated in terms of the (unknown) 
aC/aTand a2C/aT2 by integrating (3.3) over the intervals ( -  co, -a) and (a,  00). Then 
the equation for C, in terms of Q ,  may be rearranged to give an expression involving 
the unknown quantities on one side, and the (known) integral of Qn over ( -a ,  a )  on 
the other. This equation may be solved for C, provided that the time derivatives 
aC,/aT and a2Cn/aT2 can be eliminated. 

Now, in the course of a numerical integration, one might expect that  these could 
be written as finite-difference expressions in time, using information from previous 
time steps. However, when this was done, i t  was found that a rapidly growing 
numerical instability disrupted the solution. This instability was caused by the extra 
degree of freedom introduced into the equations by the time-difference terms, 
increasing their order by one, and allowing the growth of a parasitic solution. In  fact 
the information necessary to calculate the time derivatives is present in (1.1) as i t  
stands and may be calculated from the instantaneous values of C and Q .  The details 
of this calculation, and the resulting estimate for C are given in Appendix A. It was 
this procedure that was followed in the numerical integration. Once the estimate for 
Chad been obtained this could then be substituted back into (3.3), and used to find 
the values of Q needed to evaluate centred-difference expressions at the edges of the 
computational domain. 

Finally, having dealt with the discretization process in x and Y ,  i t  is now 
appropriate to consider the method used to integrate (2.5) in time. One difficulty is 
the fact that the speed of the basic shear flow increases towards the edges of the 
computational domain. The equations for Q,, obtained by substituting (3.1) and (3.2) 
into (1 .  l ) ,  are of the form 

(3.4) 

where N ,  denotes a nonlinear term. It is clear that, when Y is large, the time steps 
taken will need to be quite small so that there is no numerical instability, due to  the 
Y(aQ/ax) term, near the edge of the computational domain. I n  order to allow the use 
of a larger time step these terms were dealt with implicitly, since the equations that 
result are easy to solve. The other terms are evaluated using an explicit Adams- 
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Bashforth method. The integration scheme, described in Appendix B, was then 
second-order accurate in time. 

Any results of numerical simulations are valueless unless there is an independent 
check on the methods used. Three such checks were applied here. 

(i) 

(ii) 

(iii) 

The growth rates of disturbances were compared with that predicted by the 
linear stability theory. However, this could give no information about the 
correctness of the nonlinear calculation. 
The equation (1 .l) also has an invariant related to the enstrophy. If (1.1) is 
multiplied by Q + Q ,  and the mean with respect to z (but not over 2 )  is taken, 

{2Q&+Q2}. = 0. 
ac a it is found that a 

- {20Q + QY +% ay aT (3.7) 

It is not immediately clear that this expression may be integrated with respect 
to Y on ( -  0 0 ~ 0 0 ) .  However, if Q is of the asymptotic form (3.3), the integral 
is well defined and so the result 

may be obtained. The conserved quantity, Z say, was evaluated at  a number 
of stages during the numerical calculation, using an asymptotic estimate for 
the contribution to the integral outside the computational domain. 
A feature of (1.1) is that fluid particles moving with velocity (Y,aC/ax) 
conserve the quantity Q + Q .  The motion of a number of such particles was 
followed in the calculation, and the quantity 8 + Q calculated at each of their 
positions. The requirement that this quantity be conserved is an extremely 
demanding test of the local accuracy of the vorticity field predicted by the 
model. 

4. Numerical experiments 
The evolution equation (1.1) describes the nonlinear deformation of vorticity 

contours by the flow associated with the disturbance. Inherent in this process is a 
rapid cascade of the vorticity field to smaller and smaller spatial scales. The time 
taken for the cascade to reach the smallest spatial scale resolved in a numerical model 
provides an obvious limit on the time for which the vorticity field can be followed 
by that model. However it was found possible, despite this limit, to follow the 
evolution of the disturbance up to such time as the associated secondary cat’s eye 
ceased to grow. This gave a first idea of the effectiveness of the disturbance in 
redistributing, through advection around the growing cat’s eye, the vorticity in the 
critical layer. 

In each case studied the initial form of the disturbance was set to be that of the 
linear normal-mode solution, with small amplitude. For each position f along the 
critical layer and time in its evolution considered, the wavenumber of the 
disturbance in the x-direction was assumed to be that of the fastest-growing mode 
according to linear theory. As the amplitude of the disturbance grew, higher har- 
monics to that initially present were forced by the nonlinear terms in the equations. 

Some preliminary experiments were carried out to assess suitable choices for the 
size of the computational domain and the resolution of the numerical model. It was 
found that taking the boundaries of the domain a t  Y equal to + 5 and - 5 and using 
201 grid points evenly spaced across this domain gave satisfactory results. Indications 
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were that these choices gave errors of less than 3 % (in terms of initial growth rates, 
width of regions over which the vorticity was drastically rearranged, etc.) and this 
aspect of the errors associated with the computational scheme will not be discussed 
further. Attention will instead be focused on the effects of the finite number of 
degrees of freedom in the x-direction. 

One would expect the details of the vorticity field to  be sensitive to  lack of spatial 
resolution. However, one might also expect that the stream function induced by this 
vorticity field would be less sensitive, since the operation of calculating one from the 
other involves an inverse Laplacian, which acts as a spatial low-pass filter. In fact, 
in this particular case the quantity C, representing the Fourier transform of the 
stream function, is given by (1.2). Since the wavenumber-dependent factor is 
proportional to  k when k is large, the disturbance stream-function pattern should be 
relatively insensitive to  the small-scale vorticity field. 

This intuition was confirmed by running the numerical model with parameters 
appropriate to a particular location in the critical layer and a particular stage in its 
evolution, but varying the number of harmonics included in the x-direction. Table 1 
shows the evolution in time with the number of the component of stream function 
in the first harmonic. The case displayed is that of !f’ = 2 1 / 2 ,  corresponding to KM’s 
figure 2 ( c ) ,  with 2 = in. It may be seen that there is little difference in the results 
if seven or more harmonics are present. 

It could be argued that a higher-harmonic component would be more sensitive to 
the number of harmonics. However, the first harmonic is the dominant part of the 
stream function, and it appears that  small changes in other harmonics are unimportant 
to the rearrangement of vorticity. This is supported by the evidence in figure 1, which 
shows the spectrum of C at various times during one of the numerical experiments 
represented in table 1, for the particular case of 15 harmonics. Although the 
amplitudes of higher harmonics do increase in time relative to  that of the first, they 
clearly never become as important. 

I n  contrast, evidence from these numerical experiments suggests that the vorticity 
field is sensitive to  the number of harmonics. The enstrophy spectrum, shown in 
figure 1, fills rather rapidly at the higher wavenumbers resolved. I n  addition, direct 
comparison of the vorticity fields predicted by models with varying zonal resolution 
reveals strong differences. Figure 2 shows the vorticity field a t  a particular time in 
the evolution of the disturbance, for runs with 7 and 31 harmonics. The contours 
correspond to material lines, which are aligned in the x-direction when the disturbance 
amplitude is very small and are subsequently deformed by the flow. The appearance 
of closed contours is therefore an indication that the model resolution is insufficient 
to reproduce the true vorticity field. 

Also shown in each figure, as a solid line, is the mean-vorticity profile, being that 
obtained by averaging over a number of wavelengths of the disturbance (on the 
x-scale), rather than that over the wavelength of the forced wave (on the 2-scale). 
The initial profile, present before the disturbance started to grow and so corresponding 
to a local profile a t  a particular time in the SWW solution, is shown by the dashed 
line. I n  addition a linear profile, corresponding to the /3-plane distribution of absolute 
vorticity, is shown by the dotted line. 

Superimposed on each vorticity plot is the secondary ‘cat’s eye’ produced by the 
first harmonic part of the disturbance stream function only. For reasons already 
stated this is believed to be a good approximation to that which would be obtained 
by including all the harmonics. As can be seen from figure 2 (b ) ,  at T = 5.5, when the 
disturbance had almost grown to its maximum size (which is attained a t  T = 5.7), 
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T N = 3  N = 7  N =  15 N = 3 1  

4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.8 
6.0 

0.0115 
0.1327 
0.2391 
0.3329 
0.4125 
0.4768 
0.5256 
0.5594 
0.5841 
0.5723 

0.0167 
0.1341 
0.2403 
0.3339 
0.4131 
0.4766 
0.5231 
0.5526 
0.5632 
0.5472 

0.0167 
0.1341 
0.2403 
0.3340 
0.4131 
0.4766 
0.5231 
0.5526 
0.5629 
- 

0.0167 
0.1341 
0.2403 
0.3339 
0.4131 
0.4766 
0.5230 
0.5526 
0.5629 
0.5464 

TABLE 1. Values of (q+ Cz,+,)f. The value of the first-harmonic component of the stream function 
(q + PN+,)t attained at time T, for models with differing numbers of harmonics N included. These 
results are for f = iz and = 2 .\/2 (corresponding to figure 6). 

0 

c 
14: 
4 

El - 

- 5  

(4 
Harmonic number 

8 16 
0 

- 5  

( b )  
Harmonic number 

' 5.5 

. 5  

' 4.5 

T = 3.5 

FIGURE 1. Amplitudes of (a) the zonally varying part of the stream function and (b)  the enstrophy, 
in each wavenumber component at times T of 3.5,4.0,4.5,5.0 and 5.5, in a caw with 15 harmonics 
included in the calculation. 

the mean vorticity had effectively been redistributed across the whole region defined 
by the limits of the cat's eye. A very important result, manifest in table 1 and in 
figure 2(a ) ,  was that the width of this region was predicted rather well by the model 
with only seven zonal harmonics, even though this was unable to reproduce 
accurately the details of the vorticity field. 

It is again stressed that the wavelength of the disturbance is very much less than 
that of the forced wave, so that if a diagram of the whole cat's eye, e.g. KM figure 2 
or figures 5-7 in this paper, were drawn to be in proportion with figure 2, it would 
have to be stretched an enormous amount in a direction parallel to the x-axis. Thus, 
although the vorticity pattern in figure 2 looks superficially the same as that in KM 
figure 2 (c)  for example, it would not necessarily be unstable in the same way because 
its wavelength is comparable with the relevant outer-flow lengthscale and it cannot 
be considered as a locally parallel flow. 
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Y 

- 5  
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. .  
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- 5  
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- 5  / 
- 5  
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\ ‘, Q 
/ , 

0 X 2r /k  

FIQURE 2. The absolute vorticity field at a late stage of a model run with = 2 1 / 2 ,  corresponding 
to KM’s figure 2, and f = -@. Each of the upper (a) and lower (b) figures consists of two parts. 
On the left absolute vorticity contours are shown at intervals of 0.5 over the entire computational 
domain. Superimposed on the contours is the instantaneous shape of the growing cat’s eye, shown 
aa a finely daahed line, around which material is being advected. 

On the right the meridional profile of absolute vorticity is shown. The solid line is the 
instantaneous mean (over 2) profile. The coarsely dashed line is that which was present when the 
disturbance had infinitesimal amplitude and is identical to the local profile, at a particular value 
of 2, predicted by the SWW solution. The finely dashed line is the original beta-plane profile, which 
existed before the forcing was switched on. 

In  both cases the model included 201 grid points evenly spaced in Y across the domain. However 
in (a) the model contained 7, and in (b) 31, harmonics in the 2-direction. 

The three checks on the reliability of the numerical method which were described 

(i) the growth rates predicted by linear theory and observed in the model 
in $3 were applied to this case. It was found that : 

behaviour differed by less than 0.2 % ; 
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(ii) the invariant quantity Z varied by less than 2 yo of the amount by which its 
component parts (e.g. the disturbance enstrophy) changed during the course 
of the numerical integration. 

The results of applying the most demanding test, (iii), are most easily shown 
graphically. Figures 3(a ) ,  (b), (c)  and ( d )  show the change in position of thirty 
particles, denoted by crosses, as the disturbance grew. 

These particles all lie on a single material line, which was originally oriented 
zonally. This line was then twisted up, by the original cat’s eye velocity field due to 
the forced wave and, as shown, is now being twisted up again, on a smaller 2-scale, 
by the secondary cat’s eye due to the growing disturbance. 

It may be seen that, even with 31 harmonics (and 63 degrees of freedom in the 
2-direction), particles do not conserve their vorticity exactly, up to the time T = 5.7. 
However, the fact that the vorticity remained more or less invariant for each particle, 
at least as the growth rate began to decrease, gave confidence in the accuracy of the 
numerical methods and the program code. For reasons already cited it is believed 
that the discrepancy is not important as regards the ability of the model to predict 
the evolution of the disturbance. It is on small scales and therefore is likely to 
represent vorticity that is ‘passive’ rather than ‘active’. 

A t  different locations in the critical layer, disturbances have different growth rates, 
and reach different ultimate amplitudes. For example, figures 4 (a) and ( b )  show the 
vorticity fields, leading-harmonic cat’s eye outlines and mean-vorticity profiles, as 
the fastest-growing disturbance reaches its maximum amplitude at the locations 
2 = in and 2 = -in. These figures should reinforce the idea that the width of the 
secondary cat’s eye is a good indication of the size of the region over which vorticity 
will be redistributed. 

To get an overall picture of the effect of the instability on the vorticity distribution 
in the critical layer, a number of low-resolution (7 harmonic) calculations were then 
performed, for various locations in the critical layer, and for different stages in its 
evolution. Using the maximum value attained by the first-harmonic component of 
the stream function, the maximum width attained by the secondary ‘ cat’s eyes’ could 
be calculated to good approximation. Then, assuming that these were centred where 
the mean flow was equal to the real part of the phase speed of the growing disturbance 
as predicted by the linear theory, the values of Y between which vorticity would be 
stirred up were calculated. In figures 5-7 these values have been marked on the 
corresponding plots of the absolute vorticity as predicted by the SWW theory. Recall 
that the left-to-right extent of these pictures is very much greater than that in 
figures 2 4 .  The vertical bars superimposed on the plots for f’= 3 4 2 / 2 ,  2 4 2  
and 3 4 2 ,  therefore, suggest the extent to which the instability is likely to rearrange 
the vorticity in the critical layer. In particular, it is clear that the regions affected do 
not necessarily increase in size as $ increases, even though the vorticity gradients 
become stronger. The asymmetry of the regions, both from top to bottom and left 
to right of the figures, is also striking, particularly in figure 7. 

5. Discussion 
The main result of this paper is the confirmation that the instability discovered 

by KM is effective in substantially rearranging the vorticity in the nonlinear critical 
layer. Indeed figures 5-7 indicate that such rearrangement will drastically change the 
vorticity distribution and therefore, after differential advection by the basic shear 
has had time to act, the matching condition to the outer flow, through (1.2). This 
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FIQIJRE 3. Each figure shows stages in the evolution of a single absolute-vorticity contour (value 
-0.1) aa it is twisted up by the growing disturbance. The changes in position of 30 particles, initially 
lying on this contour, were calculated independently of the time integration of the vorticity 
equation. The extent to which the particles remain on the contour is a demanding test of the 
accuracy of the numerical integration. 

In the figures the positions of the particles are shown by crosses, otherwise the graphical 
conventions used are those described in the caption to figure 2. The times T corresponding to each 
figure are (a) 4.0, (a) 4.5, (c) 5.0, ( d )  5.5. In the case displayed 31 harmonics were used to represent 
the x-dependence of the vorticity field. 

represents an important modification to the SWW theory. The precise consequences 
for the long-time evolution are unknown at present. All we know is that, as proved 
in KM, the instability cannot cause the critical layer to remain a wave absorber (or 
become an over-reflector) in the time mean. 

The results of the linear stability analysis suggested that the instability might have 
a stronger effect in the left-hand half of the cat’s eye, as it is shown in figures 5-7, 
insofar as growth rates were larger there (recall KM’s table 1). On the basis of this 
result and the fact that the real parts of the phase speeds of growing modes were 
generally positive, one might speculate that the vorticity would be redistributed most 
effectively somewhat above and to the left of the centre of the cat’s eye. The results 
of the nonlinear calculations presented here are a reminder that, in general, ‘linear’ 
growth rates are a poor guide to the ultimate amplitude that an unstable disturbance 
will reach. The regions shown in figures 5-7 are not wider on the left-hand side of 
the cat’s eye, although they are generally centred in its upper half. 

There is one obvious criticism of the approach taken in this paper to the problem 
of the evolution of a nonlinear critical layer: that the basic states on which the 
disturbances were allowed to grow would be unlikely to be achieved. The instability 
would become effective almost as soon as the first reversal of the vorticity gradient 
appears (at !f’ = in). What would presumably happen is that the instability would 
lead to regions in which the vorticity had been considerably rearranged and which 
slowly changed in size and shape. No attempt has been made in this paper to solve 
such a problem. 

The regions shown in figures 5-7 might be thought of as resulting from an extremely 
careful experiment in which the nonlinear critical layer evolved, undisturbed, until 
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FIQURE 4. This figure shows the absolute vorticity field a t  the instant the growing disturbance 
reached its maximum amplitude. Graphical conventions are as for figure 2, and 31 harmonics were 
used to represent the s-dependence of the vorticity field. Results are displayed for basic states 
corresponding to the time r f  = 2 1 /2  in the evolution of the nonlinear critical layer at  values of 2 
of (a) :x and (b) -1.. 

a certain time when a small amount of ‘noise’ was introduced. The amplitude of the 
disturbance triggered by such noise would then grow extremely rapidly, and the 
vorticity field would be stirred up. 

The difference in timescale between that for the eddies, and that for the critical 
layer as a whole, is a consequence of the long-wave assumption which allows the SWW 
solution. It provides an important simplification that makes the instability problem 
much more tractable, and is difficult to say exactly what would happen if it  were 
relaxed. Here the instability is spectacularly efficient at rearranging the vorticity 
because the time which it takes to develop is so short compared with that for the 
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FIQURE 5. Contours of absolute vorticity in the SWW nonlinear critical layer at p = 3 4 2 1 2 .  
Superimposed are vertical lines which show the maximum extent of the disturbance cat’s eye at 
the corresponding value of 2. 
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FIGURE 6. Contours of absolute vorticity in the SWW nonlinear critical layer at p = 2 4 2 .  
Superimposed are vertical lines which show the maximum extent of the disturbance cat’s eye at 
the corresponding value of 2. 

evolution of the critical layer as a whole. With shorter wavelength for the forced waves 
it is possible that the instability would not be so effective in rearranging the vorticity 
field. 

The only concrete example we have is in the numerical simulation of BBland (1976). 
There the value of p is 0.25 whereaa here it has been assumed to be very small. 
Consequently, in BBland’s case, the instability would not be expected to grow so 
rapidly on the timescale of evolution of the whole nonlinear critical layer. The fact 
that disturbances grow more rapidly in a particular location might then be more 
important. Indeed this might explain why the disturbance that could be growing as 
a result of the critical-layer instability seems strongest in the upper left-hand part 
of the cat’s eye. The possibility also remains that the cat’s eye distortions seen in 
BBland’s simulation are simply a result of the feedback between the changing 
vorticity distribution in the critical layer and the shape and size of the cat’s eyes. 
This feedback is almost always present, except in the special case in which the SWW 
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FIQURE I. Contours of absolute vorticity in the SWW nonlinear critical layer at rf = 3 1/2.  
Superimposed are vertical lines which show the maximum extent of the disturbance cat’s eye at 
the corresponding value of 2. 

solution is valid, and may be enhanced if the outer flow is in a configuration for which 
the forced wave or one of its higher harmonics is near resonance (Ritchie 1985). 

= in, could have 
been performed. There is presumably some asymptotic regime in which the growth 
rate of disturbances is comparable with the rate of change of the vorticity profile and 
the instability problem is an explicitly time-dependent one. However, i t  would have 
been impossible to  follow the evolution of the critical layer for very long with such 
an approach, and it would be unlikely to  give insight about where the instability 
would stir up the vorticity. Further, i t  would have been difficult to extend the scope 
of the methods used in such a calculation. 

Although the analytic solution of Stewartson (1978) represents an important step 
forward in our understanding of nonlinear critical layers, i t  can be applied only to  
the case of long wavelength and to particular forcing configurations. Probably the 
only realistic approach to the whole problem of the evolution of the nonlinear critical 
layer, including the effects of the instability and possible resonances, will be a 
high-resolution numerical simulation. However, rather than using BBland’s (1976, 
1978) approach in which the entire problem was solved numerically, i t  is likely to  
be much more efficient and effective to use the method of matched asymptotic 
expansions, and solve numerically in an inner region only. In  fact Warn & Warn 
(1978) did this successfully, but only for the long-wavelength limit @-to). Work on 
the numerical solution of the critical-layer equations for finite p, allowing the 
possibility of instability and resolving the resulting vigorous eddy motion, is in 
progress and will be reported elsewhere. 

It is likely that a ‘local’ analysis, studying the instability near 
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ledged. Preparation of the manuscript was supported by the Joint Institute for the 
Study of the Atmosphere and Ocean. 



Nonlinear instability of a Rossby-wave critical layer 509 

Appendix A. Method of calculating C 

Then, using the asymptotic form (3.3), it may be shown that 
The limits of the computational grid are set to be Y = + a  and Y = - a  respectively. 

2R 
1 

where Q = 2~ Seikz&(k, Y, T) dk and C = 

Now, using (1.2) and writing -n cotnI2k = 8(k) ,  the result 

is obtained, which serves as a basis for the estimation of b. 
The first approximation to b is defined by 

b(l) = 8 ( k )  Ja & dY 
-a 

and is correct to O(a-l) .  This is now used to estimate the at?/%" appearing in (A 2) 
and so provide an approximation to b correct to O ( U - ~ ) .  

Differentiating (A 3) with respect to T, and then substituting for a&/%" using the 
Fourier transform of ( 1.1 ) , leads to 

- = - 8 ( k )  j' ab(1) 

i3T -a 

where N = (aC/az) aQ/a Y. The nonlinear term N only gives an O ( 0 )  contribution 
when integrated with respect to Y, and so is discarded at this stage in the 
approximation procedure. However, the quantity bis effectively multiplied by a when 
the integration is performed, and so this must not be replaced by the approxima- 
tion 0 1 ) .  

On substituting (A 4) into (A 2), and then isolating b, the next approximation b(z), 
which is correct to O ( U - ~ ) ,  is found to be 

This procedure may be repeated, differentiating (A 5 )  with respect to T and then 
substituting again from (1.1). However, at this stage the nonlinear terms must be 
retained, but, consistent, with the approximation, t?(2) may be used instead of the next 
approximation, fl(s) in these terms. The result is that 

where 

17-2 



28(k2) a &(k2, Y ,  T )  d Y }  . +a I_, 
The notation f ( k , )  * g(k2)  is used to denote the convolution off and g. Finally R is given 

R = I +-I&(?, 2 8 ( k ) 2  a ,  P)-Q(z,  --a, ~ ) - 2 8 ( k ) [ ~ ( & ,  a, P)+Q(?, --a, P )  
by 

ay 
2 8 ( k )  a &(z, Y , T )  dY]}-'k'[&cj.,a,f')+&(?, -u ,P ) ] .  

-a 

This approximation 0 ( 3 ) ( k ,  T ) ,  correct to O ( C Z - ~ ) ,  was that used to represent C(k, T) 
in the numerical integration. The asymptotic form of Q was also needed, for evaluation 
of the centred space differences at the edge of the computational domain. For this 
purpose an approximation to @/aT was carried along in the calculation. The 
approximation was evaluated by setting the left-hand side of (A 2 )  equal to Cc3)(k, T) 
and then multipying by a ,  and was correct to O(a-2). 

Appendix B. The time-stepping method 
In this Appendix the notation of $3 is used, with the addition that the notation 

The equations for the quantities Q,, regarded as continuous functions of time, are 
Q g )  is used for the value of the variable Q ,  at time T .  

of the form 

(B l a )  

(B 1b) 

aQm a8 -+kmYQ,+N+kmC,+N z + N ,  = 0 ( 1  < m < N ) ,  

___- aQm+N k m Y Q , - k m C m - + N m + N = O  (1 < m <  N ) ,  

aT 

a& 
aT ay  

-+No aQo = 0. 
aT 

These were approximated, correct to O(AT2), by the finite time-differenced forms 

For each m (B 3a) and (B 3b) are simultaneous equations in the quantities Q g + A T )  
and Qg$kT). Their form is so simple that a trivial algebraic manipulation yields 
explicit expressions for these quantities. 
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